skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Slater, Stefan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study investigates stopout patterns in MOOCs to understand course and assessment-level factors that influence student stopout behavior. We expanded previous work on stopout by assessing the exponential decay of assessment-level stopout rates across courses. Results confirm a disproportionate stopout rate on the first graded assessment. We then evaluated which course and assessment level features were associated with stopout on the first assessment. Findings suggest that a higher number of questions and estimated time commitment in the early assessments and more assessments in a course may be associated with a higher proportion of early stopout behavior. 
    more » « less
    Free, publicly-accessible full text available July 17, 2026
  2. Students in open-ended educational games have a number of different pathways that they can select to work productively through a learning activity. Educators and system designers may want to know which of these pathways are most effective for engagement, learning, or other desirable outcomes. In this paper, we investigate which prior jobs and factors are associated with higher rates of student quitting behavior in an educational science exploration game. We use a series of Chi squared analyses to identify the jobs with the highest rates of quitting overall, and we calculate logistic regressions within specific jobs to determine the potential factors that lead to students quitting those jobs. Our analysis revealed that for 23 of the 40 jobs examined, having experience in at least one previous job significantly decreased the chances of students quitting the subsequent job, and that completing specific prior jobs reduces quit rates on specific later jobs. In our discussion, we describe the challenges associated with modeling quitting behavior, and how these analyses could be used to better optimize students’ pathways through the game environment. Specially, guiding students through specific sequences of preliminary jobs before tackling more challenging jobs can improve their engagement and reduce dropout rates, thus optimizing their learning pathways. 
    more » « less
  3. Students who take an online course, such as a MOOC, use the course's discussion forum to ask questions or reach out to instructors when encountering an issue. However, reading and responding to students' questions is difficult to scale because of the time needed to consider each message. As a result, critical issues may be left unresolved, and students may lose the motivation to continue in the course. To help address this problem, we build predictive models that automatically determine the urgency of each forum post, so that these posts can be brought to instructors' attention. This paper goes beyond previous work by predicting not just a binary decision cut-off but a post's level of urgency on a 7-point scale. First, we train and cross-validate several models on an original data set of 3,503 posts from MOOCs at University of Pennsylvania. Second, to determine the generalizability of our models, we test their performance on a separate, previously published data set of 29,604 posts from MOOCs at Stanford University. While the previous work on post urgency used only one data set, we evaluated the prediction across different data sets and courses. The best-performing model was a support vector regressor trained on the Universal Sentence Encoder embeddings of the posts, achieving an RMSE of 1.1 on the training set and 1.4 on the test set. Understanding the urgency of forum posts enables instructors to focus their time more effectively and, as a result, better support student learning. 
    more » « less